Matematikte, y için x biçiminde yazılmış bir denkleminiz olduğunda (ör. y = x2 -3x), türevi bulmak için temel türev tekniklerini (matematikçiler tarafından örtük fonksiyon türev teknikleri olarak adlandırılır) kullanmak kolaydır. Ancak, eşittir işaretinin bir tarafında yalnızca y terimi ile oluşturulması zor olan denklemler için (örn.2 + y2 - 5x + 8y + 2xy2 = 19), farklı bir yaklaşım gereklidir. Kapalı fonksiyon türevleri adı verilen bir teknikle, açık fonksiyon türevlerinin temellerini bildiğiniz sürece çok değişkenli denklemlerin türevlerini bulmak kolaydır!
Adım
Yöntem 1/2: Basit Denklemleri Hızla Türetme
Adım 1. Her zamanki gibi x terimlerini türet
x gibi çok değişkenli bir denklem türetmeye çalışırken2 + y2 - 5x + 8y + 2xy2 = 19, nereden başlayacağınızı bilmek zor olabilir. Neyse ki, örtük bir fonksiyonun türevinin ilk adımı en kolayıdır. Başlangıç için adi (açık) türevlerin kurallarına göre denklemin her iki tarafındaki x terimlerini ve sabitleri türetmeniz yeterlidir. Şimdilik y terimlerini görmezden gelin.
-
Yukarıdaki basit denklemin bir örneğini türetmeye çalışalım. x2 + y2 - 5x + 8y + 2xy2 = 19'un iki terimi vardır x: x2 ve -5x. Bir denklem türetmek istiyorsak, önce şunu yapmalıyız, şöyle:
-
-
x2 + y2 - 5x + 8y + 2xy2 = 19
- (x'te 2'nin gücüne indirgeyin2 katsayı olarak, -5x'teki x'i kaldırın ve 19'u 0'a değiştirin
- 2x + y2 - 5 + 8y + 2xy2 = 0
-
-
Adım 2. Y terimlerini türet ve her terimin yanına (dy/dx) ekle
Bir sonraki adımınız için, x terimlerini türettiğiniz gibi y terimlerini de türetmeniz yeterlidir. Ancak bu sefer katsayıları ekleyeceğiniz gibi her terimin yanına (dy/dx) ekleyin. Örneğin, y'yi düşürürseniz2, türev 2y(dy/dx) olur. Şu an için x ve y olan terimleri yok sayın.
-
Örneğimizde denklemimiz şu şekilde görünüyor: 2x + y2 - 5 + 8y + 2xy2 = 0. Bir sonraki y türetme adımını aşağıdaki gibi gerçekleştireceğiz:
-
- 2x + y2 - 5 + 8y + 2xy2 = 0
-
(y'de 2'nin gücüne getirin2 katsayı olarak, 8y'deki y'yi kaldırın ve her terimin yanına dy/dx koyun).
- 2x + 2y(dy/dx) - 5 + 8(dy/dx) + 2xy2= 0
-
Adım 3. x ve y'ye sahip terimler için çarpım kuralını veya bölüm kuralını kullanın
X ve y'ye sahip terimlerle çalışmak biraz zor, ancak çarpım ve türevler için bölüm kurallarını biliyorsanız, bunu kolay bulacaksınız. x ve y terimleri çarpılırsa, çarpım kuralını kullanın ((f × g)' = f' × g + g × f'), f yerine x terimini ve g yerine y terimini koyarak. Öte yandan, x ve y terimleri birbirini dışlıyorsa, bölüm kuralını kullanın ((f/g)' = (g × f' - g' × f)/g2), f'nin payını ve g'nin paydasını değiştirerek.
-
Örneğimizde 2x + 2y(dy/dx) - 5 + 8(dy/dx) + 2xy2 = 0, x ve y - 2xy olan tek bir terimimiz var2. x ve y birbiriyle çarpıldığından, aşağıdaki gibi türetmek için çarpım kuralını kullanacağız:
-
- 2xy2 = (2x)(y2)- 2x = f ve y olarak ayarla2 = g in (f × g)' = f' × g + g × f'
- (f × g)' = (2x)' × (y2) + (2x) × (y2)'
- (f × g)' = (2) × (y2) + (2x) × (2y(dy/dx))
- (f × g)' = 2 yıl2 + 4xy(dy/dx)
-
- Bunu ana denklemimize eklersek, 2x + 2y(dy/dx) - 5 + 8(dy/dx) + 2y2 + 4xy(dy/dx) = 0
Adım 4. Yalnız (dy/dx)
Neredeyse bitti! Şimdi tek yapmanız gereken denklemi (dy/dx) çözmek. Bu zor görünüyor, ancak genellikle değil - unutmayın, herhangi iki a ve b (dy/dx) ile çarpılırsa, çarpmanın dağılma özelliği nedeniyle (a + b)(dy/dx) olarak yazılabilir. Bu taktik, ayırmayı (dy/dx) daha kolay hale getirebilir - sadece diğer tüm terimleri parantezin diğer tarafına taşıyın, ardından (dy/dx) yanındaki parantez içindeki terimlere bölün.
-
Örneğimizde, 2x + 2y(dy/dx) - 5 + 8(dy/dx) + 2y'yi sadeleştiriyoruz.2 + 4xy(dy/dx) = 0 aşağıdaki gibidir:
-
- 2x + 2y(dy/dx) - 5 + 8(dy/dx) + 2y2 + 4xy(dy/dx) = 0
- (2y + 8 + 4xy)(dy/dx) + 2x - 5 + 2y2 = 0
- (2y + 8 + 4xy)(dy/dx) = -2y2 - 2x + 5
- (dy/dx) = (-2y2 - 2x + 5)/(2y + 8 + 4xy)
- (dy/dx) = (-2y2 - 2x + 5)/(2(2xy + y + 4)
-
Yöntem 2/2: Gelişmiş Teknikleri Kullanma
Adım 1. Herhangi bir nokta için (dy/dx) bulmak üzere (x, y) değerini girin
Güvenli! Denkleminizi zaten dolaylı olarak türetmişsiniz - ilk denemede kolay bir iş değil! Herhangi bir nokta (x, y) için gradyanı (dy/dx) bulmak için bu denklemi kullanmak, noktanız için x ve y değerlerini denklemin sağ tarafına takıp (dy/dx) bulmak kadar kolaydır..
-
Örneğin, yukarıdaki örnek denklemimiz için (3, -4) noktasındaki gradyanı bulmak istediğimizi varsayalım. Bunu yapmak için x yerine 3'ü ve y yerine -4'ü aşağıdaki gibi çözerek değiştireceğiz:
-
- (dy/dx) = (-2y2 - 2x + 5)/(2(2xy + y + 4)
- (dy/dx) = (-2(-4)2 - 2(3) + 5)/(2(2(3)(-4) + (-4) + 4)
- (dy/dx) = (-2(16) - 6 + 5)/(2(2(3)(-4)))
- (dy/dx) = (-32) - 6 + 5)/(2(2(-12))
- (dy/dx) = (-33)/(2(2(-12))
- (dy/dx) = (-33)/(-48) = 3/48, veya 0, 6875.
-
Adım 2. İşlevler içinde işlevler için zincir kuralını kullanın
Zincir kuralı, kalkülüs problemleri (örtük fonksiyon türev problemleri dahil) üzerinde çalışırken sahip olunması gereken önemli bir bilgi parçasıdır. Zincir kuralı, (f) şeklinde yazılabilen bir F(x) fonksiyonu için Ö g)(x), F(x)'in türevi eşittir f'(g(x))g'(x). Zor kapalı fonksiyon türev problemleri için bu, denklemin farklı bireysel kısımlarını türetmenin ve ardından sonuçları birleştirmenin mümkün olduğu anlamına gelir.
-
Basit bir örnek olarak, sin(3x)'in türevini bulmamız gerektiğini varsayalım.2 + x) sin(3x) denklemi için daha büyük kapalı fonksiyon türev probleminin bir parçası olarak2 +x) +y3 = 0. Günahı (3x) hayal edersek2 + x) f(x) ve 3x olarak2 + x g(x) olarak türevi şu şekilde bulabiliriz:
-
- f'(g(x))g'(x)
- (günah(3x2 + x))' × (3x2 +x)'
- çünkü (3x2 +x) × (6x + 1)
- (6x + 1)cos(3x2 +x)
-
Adım 3. x, y ve z değişkenli denklemler için (dz/dx) ve (dz/dy)'yi bulun
Temel analizde olağandışı olmasına rağmen, bazı gelişmiş uygulamalar ikiden fazla değişkenli örtük fonksiyonların türetilmesini gerektirebilir. Her ek değişken için, x'e göre ek türevini bulmalısınız. Örneğin, x, y ve z'ye sahipseniz, hem (dz/dy) hem de (dz/dx) için arama yapmalısınız. Bunu x'e göre denklemi iki kez türeterek yapabiliriz - ilk olarak, z içeren bir terim türettiğimiz her seferde (dz/dx) gireceğiz ve ikinci olarak, her türettiğimizde (dz/dy) ekleyeceğiz. z. Bundan sonrası sadece (dz/dx) ve (dz/dy) çözümleme meselesidir.
- Örneğin, x'i türetmeye çalıştığımızı varsayalım.3z2 - 5xy5z = x2 + y3.
-
İlk önce x'e karşı türetelim ve (dz/dx) girelim. Gerekirse ürün kuralını uygulamayı unutmayın!
-
- x3z2 - 5xy5z = x2 + y3
- 3x2z2 + 2x3z(dz/dx) - 5y5z - 5xy5(dz/dx) = 2x
- 3x2z2 + (2x3z - 5xy5)(dz/dx) - 5y5z = 2x
- (2 kere3z - 5xy5)(dz/dx) = 2x - 3x2z2 + 5y5z
- (dz/dx) = (2x - 3x2z2 + 5y5z)/(2x3z - 5xy5)
-
-
Şimdi aynısını (dz/dy) için yapın
-
- x3z2 - 5xy5z = x2 + y3
- 2 kere3z(dz/dy) - 25xy4z - 5xy5(dz/dy) = 3y2
- (2 kere3z - 5xy5)(dz/gün) = 3y2 + 25xy4z
- (dz/dy) = (3y2 + 25xy4z)/(2x3z - 5xy5)
-